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ABSTRACT

Tiny pressure gradient forces caused by hydrostatic truncation error can overwhelm minuscule pressure
gradients that drive shallow nocturnal drainage winds in a mesobeta numerical model. In seeking a method to
reduce these errors, a mathematical formulation for pressure gradient force errors was derived for a single
coordinate surface bounded by two pressure surfaces. A nonlinear relationship was found between the lapse
rate of temperature, the thickness of the bounding pressure layer, the slope of the coordinate surface and the
location of the coordinate surface within the pressure layer. The theory shows that pressure gradient force error
can be reduced in the numerical model if column pressures are sums of incremental pressures over shallow
layers. A series of model simulations verify the theory and show that the theory explains the only source of

pressure gradient force error in the model.

1. Introduction

The problem of truncation error within the pressure
gradient force terms of numerical models written in
sigma coordinates ( Phillips 1957) has been the subject
of considerable investigation (Kurihara 1968; Gary
1973; Sundqvist 1975, 1976; Janjic 1977; Johnson and
Uccellini 1983; Carroll et al. 1987; Janjic 1989). Stud-
ies of hydrostatic truncation error as it impacts upon
flow near mountains in macroscale numerical predic-
tion models (horizontal grid spacing of the order of
100 km) found the largest truncation errors over slop-
ing terrain where the terrain-following coordinate sur-
faces depart significantly from pressure surfaces and
where the pressure gradient becomes the small differ-
ence between two large terms. Some known causes for
the truncation errors are small residuals between the
two terms of the pressure gradient (Sundqvist 1975;
Carroll et al. 1987; Janjic 1977, 1989) and/or vertical
interpolation error (Sundgvist 1976; Janjic 1977; Car-
roll et al. 1987; Johnson and Uccellini 1983),

For high resolution numerical models written in
sigma coordinates, hydrostatic truncation error can
translate into pressure gradient force errors that over-
whelm the minuscule pressure forces that drive weakly
forced circulations such as shallow drainage winds
within small stream valleys and basins characteristic
of the Middle West and South. These drainage flows
typically range from 10 cm s~ to 1 m s™'. Therefore,
we seek to find how pressure gradient force error enters
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the model calculations and to find ways to reduce or
eliminate the error.

Two tests were conducted using model simulations
with initial conditions designed to isolate circulations
caused by pressure gradient error. The results of these
tests were used to develop a mathematical theory that
is applicable for terrain-following coordinate surfaces
that slope relative to pressure surfaces. The theory
shows how the errors can be reduced so that the nu-
merical calculations are not seriously corrupted. Two
additional tests using model simulations verify the
theory.

2. Analysis of truncation error
a. Pressure gradient terms

The hybrid numerical prediction model is a shallow-
water model with a quasi-Lagrangian integration
scheme. The physical dimensions consist of 2 nocturnal
layer that extends from the surface, Z;, to a height, H,
at the top of the nocturnal layer and a free atmospheric
layer that extends from H to Zy, the height of a constant
pressure level a few hundred meters above the highest
ground. The height of the interface at H is time de-
pendent. The honizontal grid spacing is 20 m. The ver-
tical grid spacing, for this study, is the depth of the
nocturnal layer, H-Z;, and the depth of the overlying
layer, Zo-H. The depth of the nocturnal layer is ap-
proximately 10 m on hillsides. Over basins, the depth
of the nocturnal layer is constrained by the heights of
the surrounding hills and can pool up to several 10s
of meters.

The nocturnal layer is written in the S-coordinate
system:
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S=(H-2z)/(H-Z). (1)

The x component of the pressure gradient force term
in the S system is

PGX = RT[é In(p)/dx] + g[(1 — S)(6H [ éx)
+ S(8Z,/6x)].

The hydrostatic equation is not transformed.
Consider a layer of atmosphere that is bounded on
the top by height Z; and on the bottom by height Z,.
The hydrostatic pressure (p,) at the bottom of the layer
at a grid point is given by the pressure (p,) at the top
of the layer and the layer mean temperature as follows:

(2)

P2 =Py eXp[}%(Zl - Zz)] =D exp[% yl,Z] - (3)
Now consider a deep air column that consists of » lay-
ers. The pressure, p,, at height, Z,,, at the base of the
column is the pressure, pg, at the top of the column
plus the sum of the incremental pressures contributed
by each layer; that is,

£

g n
Pn = Do exp[kg kz Yk—l,k} = Po exp[R Yo,n] . (4

Substitution of (4) into ( 2) yields the pressure gradient
force term for the nocturnal layer,

PGX = g{T(8Y/6x) ;.

+8[(1 — S)H + SZ}/ox}. (5)

b. Isolating pressure gradient force error

Two tests using model simulations of shallow drain-
age flows were conducted to isolate hydrostatic trun-
cation error and to develop a method to reduce it. The
temperature lapse rates for the nocturnal boundary
layer and the free atmosphere layer above it were dry
adiabatic. This static atmosphere allows no horizontal
pressure gradients other than pressure variations that
resulted from changes in elevation. Any circulations
generated by the model were, therefore, a measure of
the pressure gradient force error. Flow-through bound-
ary conditions required no special boundary formu-
lations except where the flow was directed into the do-
main. Then extrapolated boundary conditions were
used; that is, the adjacent velocity at the previous time
level was assigned to the boundary. The results of these
tests are described below.

1) TeEST 1

A surface (Fig. 1) that is level at 30-m elevation to
the left of the figure slopes down to 0 m over a distance
of 300 m. The maximum slope along the hillside is
0.15. A small valley separates the hillside from a small
ridge 12 m high located near the center of the domain.
Elevations descend gradually from the ridge into a
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FIG. 1. Initial conditions for test 1 showing shape of land form
and overlying nocturnal layer (dashed line).

broad basin. The land form is oriented along the x-
axis. It extends infinitely in y and, therefore, all deriv-
atives with respect to y are zero. The 50 grid points are
spaced at 20-m intervals so that the land form spans a
distance of | km. A 10-m deep nocturnal boundary
layer (dashed line in Fig. 1) paralleled the surface.

‘Results after 21 min of integration are shown in Fig.
2a. The pressure gradient error systematically forced
downslope flow. Error velocities of approximately 10
cm s”! were found along the steeply sloping hillside.
Mass convergence into the valley doubled the depth of
the nocturnal layer (upper solid line).

The maximum error velocity after 60 min was 19
cm s™! (Fig. 2b). Mass convergence into the valley
tripled the depth of the nocturnal layer. In addition,
the error velocity reversed direction and was flowing
upslope along the side of the ridge at distances between
0.4 and 0.5 km.

The behavior of the error velocities near the ridge
needs further explanation. The mean pressure gradient
for the nocturnal layer was used to calculate the error
velocity. Therefore, the results in Fig. 2 are for the layer,
mean error velocity. During the course of the simu-
lation, mass mounded up the nocturnal layer in the
valley 1o the extent that after 60 min of integration the
slope of the coordinate surface at the top of the noc-
turnal layer had reversed and become steeper than the
slope of the ridge. Therefore, the mean slope of the
coordinate surfaces for the layer changed the sign of
the mean error pressure gradient. The latter reversed
the error velocity along the left side of the ridge.

2) Test 2

The finding from test | that the error velocity de-
pends upon the mean slope of the coordinate surfaces,
not just the slope of the terrain, was used to design a
second test to determine if error velocities are excited
if the surface is flat but the coordinate surface within
the domain slopes as in Fig. 1. All of the initial con-
ditions were identical to those of test 1 with the excep-
tion of the flat surface. The top of the nocturnal layer
at H (Fig. 3) slopes as in test 1. Figure 4a shows that
pressure gradient errors after 11 min of integration have
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FI1G. 2. Test | error velocities (short barb = 5 ¢cm 57'; long barb
= 10 cm s™!) and growth of error height of the nocturnal layer after
{a) 21 min and (b) 60 min of model integration.

forced error velocities down the slope of the coordinate
surface at /. By 60 min of integration (Fig. 4b), the
error velocities blow continuously from left to right.
Both tests have shown that the directions and mag-
nitudes of the error velocities depend upon the slopes
of the coordinate surfaces. In the second test, the only
differences between pressures calculated at adjacent
grid points were the elevations of the interface, H.
Though the total depth over which the pressure was
calculated was 500 m for all grid points, the depths of
the nocturnal layer and of the free atmosphere that
make up the column were not the same. Therefore,
one should expect the hydrostatic pressures calculated
over unequal finite intervals to be slightly different at
adjacent grid points. Thus, hydrostatic truncation error
is not a problem of truncation but a result of approx-
imating an integral by vertically averaging the tem-
perature over finite layers. The inexactitude that results
from approximating the hydrostatic equation has been
extensively documented in the literature already cited.
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Fi1G. 3. Initial conditions for test 2 showing flat land form and
overlying nocturnal layer (dashed line).
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FiG. 4. Test 2 error velocities and growth of error height of the
nocturnal layer afier (2) 11 min and (b) 60 min of model integration.

¢. A theory for pressure gradient force error

The pressure gradient force error is now defined from
a mathematical perspective. The derivation is modeled
after the initial conditions for test 2 (Fig. 3). The top
of the domain is defined as a pressure surface. The
lower coordinate surface is flat and also a pressure sur-
face. The mathematical expression is derived for pres-
sure gradient force error at the lower coordinate surface.
At the surface, S = | and Z; = 0, and the height cor-
rection term of (5) vanishes. The pressure gradient
force term is thus,

PGX = gT(8Y/dx). (6)

Consider in Fig. 5 a vertical cross section of atmo-
sphere bounded on the sides by two grid columns and

AZ

Z

Tz

Ax

F1G. 5. Simple grid column bounded on top and bottom by constant
pressure surfaces. Sloping coordinate surfaces (solid and dashed lines)
pass through the grid column as shown.
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on the top (Z,) and bottom (Z,) by constant pressure
surfaces. The isotherms are horizontal and the tem-
perature lapse rate is a constant I'. If the hydrostatic
pressure is approximated over the depth, Z, — Zo, then
there exists a small residual given by

2

Ey = PO[CXP( - dz) - CXD(ngo/R)] ()
o RT

However, the residual at the neighboring grid point is

the same. Therefore, the horizontal derivative of Ey

vanishes in the calculation of the pressure gradient

error.

Pressure gradient force errors appear when the cal-
culation of Y5 is done differently at neighboring grid
points. Let an S-coordinate surface intersect the layer
in Fig. 5, passing through it at depth Z, at the first grid
column and at depth Zs at the second grid column;
both depths being measured downward from the top.
For the left gnd column (4) yields

Z?‘_Zt Z)’“Zn
+

Y = -+ = s 8
20 = Y21 T Yo T To (8)
and for the right grid column,
, 2y~ 7y Zy— 7
Y=y + y5 = 2T23_3 + quo 2
From (6) the pressure gradient force error is
PGE = gTs¢/Ax (10)

where € = Y3 — Ya. Clearly, ¢ is proportional to the
pressure gradient force error with the proportionality
constant for the conditions specified by (10) being g7/
Ax. Therefore, the behavior of ¢« determines the be-
havior of the pressure gradient force error. From the
definitions (8) and (9),

ZZ—Z3TZ’%'—Z()
h+7T; T35 + 7,

Z, — 7y
T+ To)

(11)

Let Zo— Z;= AZ;. Furthermore, let 7, = To+ I'AZ;
where I is the lapse rate of temperature over the in-
terval. Since A7, = T'AZ; is only a few percent of the
total temperature, it may be neglected from the de-
nominator of the error equation. After some algebraic
expansion, (11) becomes the cubic polynomial,

e = (aTy’ + bT’T + T + dI'3)/(2ToY)

ZQ‘“Z}

n+T

€= 2

(12)
where

a=0,

b=0,

¢ = 4AZ,[AZ\(AZ) — AZy) + AZy(DZ, — AZ3)],
d= 4AZ}AZZAZ3(AZ] - AZ3)

Define a and ' to represent the fraction of the total
depth of the layer AZ, and the S-coordinate surface is
found from the top of the layer. Therefore, let o
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= AZ,/AZ, and o = AZ;/AZ,. Equation (12) sim-
plifies to

5.
e =207 (m) [~W(a, o)+ I‘_%Zz [ad(a — )]

(13)

where
wla, )= a(l — a)— a'(1 — o).

Both terms involving « and o are of the same order
of magnitude. Therefore, for temperature lapse rates
less than the dry adiabatic lapse rate and for layer
thicknesses less than 1 km, the second term of (13) is
at least two orders of magnitude smaller than the first.
Upon neglecting the second term, the equation for the
pressure gradient force error is

_ 8T e (A2 :
PGE Ax[ 2T (2To) w(a,a)}. (14)

The pressure gradient force error vanishes as the
lapse rate of temperature approaches the isothermal
lapse rate. PGE is largest when I is dry adiabatic or if
there exists a large temperature inversion. The rela-
tionship between PGE and the square of I’ confirms
the results of Carroll et al. (1987) who observed that
spurious horizontal accelerations increased by 100 for
each increase by 10 of the lapse rate.

The nonlinear function w(«a, o) carries information
on the slope of the coordinate surface and the height
at which the coordinate surface intersects the column.
The relationships between o, o, and w(a, ¢') and
therefore PGE are shown in Fig. 6. The quantity w(a,
o) has been normalized by its maximum numerical

ot

FiG. 6. The distribution of normalized w(a, «') with
respect 1o «a and o’
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value of 0.25. Given that « and o' are fractions of the
depth of the pressure layer as measured downward from
the top, Fig. 6 can be interpreted as follows:

1) When (a = ), the S-coordinate surface is hor-
izontal and thus becomes a constant pressure surface.
The pressure gradient force error is zero for this trivial
case. Therefore, w(a, o') = 0 along the ascending di-
agonal.

2) If the S-coordinate surface is located such that «
= | — o, the pressure gradient force error vanishes and
w(a, o) = 0 along the descending diagonal in Fig. 6.
The requirement is that the coordinate surface is lo-
cated the same distance from the top of a grid column
as it is from the bottom of an adjacent grid column,
both column depths being equal.

3) The sign of PGE is determined by both the slope
of the coordinate surface and its position within the
column. Consider for example the S-coordinate surface
located at the first grid column so that « = 0.3. Then,
o = 0.5 yields w(e, ') < 0, butif & = 0.8, w(a, o)
> 0.

The complex interplay between the location and

slope of the coordinate surface makes the interpretation’

of w(a, ¢') somewhat ambiguous. Further insight may
be gained through expressing o' as a function of « and
the slope @ of the coordinate surface. Reference Fig. 5
for a schematic of the relationship of the variablgs that
take part in the transformation. From the definitions,
a=AZ,/AZ;and o = AZ3/AZ,, we find

o = a— Axtan{B)/AZ,. (15)

The quantity Ax/AZ, = 1 i1s chosen to isolate slope
information in . Substitution of these definitions into
w(a, o) yields,

w{a, B) = tan(B)[1 — 2a + tan(B)]. (16)

Figure 7 shows that the distribution of w(«, 8) can
be of either sign depending upon where the coordinate
surface enters the grid column (« carries this infor-
mation ). Therefore, pressure gradient force error may
act to drive error velocities downslope at some points
in a model and drive error velocities upslope at other
points. The curves for « in the 0.7-0.8 range are similar
to the distribution of normalized spurious horizontal
acceleration found by Carroll et al. (1987) for the same
range of slope angles. The interpretation of the shape
of these curves differs from that of Carroll et al., how-
‘ever, because in the present case, the pressure gradient
force error is calculated for the surface. The surface is
horizontal, coincident with a surface of constant pres-
sure, and the pressure gradient is given by a single term.

Only the « term [second term in brackets in (16)]
is negative and, therefore, only the location where the
coordinate surface enters the grid column can force
w(a, B) < 0. Figure 8 gives a graphical perspective of
seven entry points for a surface that slopes at 20° within
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F1G. 7. Relationship between w{a, 8) and slope angle of a coor-
dinate surface for selected entry points into the grid column. Entry
points given in terms of the ratio a.

a regular grid column. Figure 9 shows that w( e, 8) for
these seven placements decreases linearly as the entry
point is moved down the grid column from o = 0.4~
1.0. The quantity w(a, 8) changes sign if the coordinate
surface enters the grid column about two-thirds down
from the top (approximately « = 0.7). The sign change
occurs at precisely where « = 1 — o' in Fig. 6.

One can use (14) to calculate the maximum error
velocity under the conditions of test 1, and compare
the results with error velocities obtained from the nu-
merical mode! after 21 min of integration. The cal-
culation was done for a slope equal to the average slope
of a 120-m section of the steepest part of the hillside
shown in Fig. 1. This interval was chosen because a
particle moving at 10 cm s ™! for 20 min will transverse
120 m. The maximum error velocity was observed at
the hillside location (see Fig. 2). In addition, the relative
locations of the top of the nocturnal layer and the top
of the grid column were the same as in the numerical
model. The w(a, ') for the hillside location is given
by the solid circle near the upper right corner of Fig.
6. Substitution of the appropriate variables into (14)
and multiplying the resulting pressure gradient force
error by 21 min gave a predicted maximum error ve-
locity along the hillside of 10.5 cm s™'. The maximum
error velocity found in the test 1 simulation was 9.5
cm s~} Therefore, allowing for the obvious differences
between methods for obtaining error velocities, it 1s
found that (14) explains all of the maximum error
velocity observed from the numerical model. The
model sensitivity tests that follow further confirm this
finding.
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d. Reducing pressure gradient error

Various methods to reduce the PGE have been pre-
sented in the literature. Most of the methods involve
the development of specialized finite difference schemes
that reduce or eliminate PGE. Another approach has
been to define an exact form for the temperature to
eliminate the hydrostatic truncation error. In the above
approaches, however, the functional form for the PGE
may not be that given in (14).

As regards the mesobeta numerical model, the pres-
sure gradient force error can be reduced in two ways.
First, in calculating the hydrostatic pressure, choose
the height interval containing the S-coordinate surface
so that the condition @ = 1 — o' is satisfied exactly.
Then w(e, ') = 0 and the PGE vanishes.

The second approach to reducing the PGE is to make
AZ, as small as possible. Equation (14) shows that the
PGE is reduced a 1000-fold for every 10-fold decrease
in the vertical separation. Two new tests were designed
to further show that (14) explains the error velocities
observed in the numerical model.

1) Test 3

Five model runs were made using the same initial

conditions as for Test 1. For each run, the hydrostatic -

pressure for the atmospheric column from 500 m to
the ground was calculated by dividing the columns into
successively thinner layers and obtaining the fidal
pressure as the sum of incremental pressures. The layer
thicknesses were 250, 100, 50, 20 and 10 m. Then the
maximum error velocities obtained from the model
simulations were compared with maximum error ve-
locities predicted by (14). As the layer thicknesses are
made smaller, there are increasing possibilities that the
coordinate surface and the pressure surfaces will cross
somewhere between grid points at one or more points

0.00-
0.25 -
0.50 -

AZy

0.75

I

1.00

Ax

FI1G. 8. Seven placements of a 20° slope coordinate surface within
a grid column bounded by pressure surfaces.
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within the domain. No effort was made to test for this.
If pressure surface—coordinate surface intersections in-
crease the PGE, the errors should be observable in the
simulations.

The results of the five runs are summarized in Table
1 for error growth after 60 min of integration. The
maximum error velocity and the growth of the maxi-
mum error height of the nocturnal layer expressed as
a percentage of the initial height are given for the five
layer thicknesses. The velocity errors for test 1 (UL)
are included for reference. Each reduction in the layer
thickness was accompanied by a significant reduction
in the error velocities and heights. When the 10 m
thickness was used, the maximum error velocity was
only 30 um s™' and the maximum error in the height
of the nocturnal layer was only 1.7 cm. The fourth
column of Table 1 gives the maximum error velocities
predicted by (14). Given the differences in the methods
for calculating the error velocities, these compare fa-
vorably in magnitude with the maximum error veloc-
ities found from the numerical simulations.

2) TesT 4

Are there any other sources of pressure gradient error
within the model not explained by (14)? The initial
conditions for the model run were identical as those
for test 1 with the exception that the lapse rate of tem-
perature was isothermal instead of dry adiabatic. Since
¢ is zero for an isothermal atmosphere, any growth of
error velocities during test 4 must arise from a source
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TABLE 1. Maximum error velocities and percent growth of maximum error heights after 60 min of integration
of numerical model for selected layer thicknesses and maximum error velocities predicted from theory.

Predicted max

Max layer Max error velocity Percent growth error velocity
thickness {m) (cms™) max error height {cms™)
UL 19.4 208.0 —
250 ) 52 125.0 8.3
100 0.72 19.2 12
50 0.11 33 0.23
20 0.024 0.81 0.007
10 0.003 0.17 0.002

other than horizontal variations of hydrostatic trun-
cation error. The model ran for 60 min and generated
no error velocity.

3. Discussion

When the pressure~height relationship is calculated
through an approximation to the integral hydrostatic
equation, there will remain a small residual “hydro-
static truncation” error. If the coordinate surfaces slope

relative to constant pressure surfaces, the hydrostatic

truncation errors will be slightly different at adjacent
grid points. The resulting tiny pressure gradient force
errors are sufficient to generate error velocities large
enough to overwhelm meteorological velocities pro-
duced in a mesobeta-scale wind model written in ter-
rain-following coordinates.

A mathematical analysis found that pressure gradient
force error depends upon the lapse rate of temperature,
the thickness of the pressure layer through which passes
a sloping coordinate surface, the slope of the coordinate
surface, and the location of the coordinate surface
within the layer. PGE can be of either sign depending
upon the location of the coordinate surface within the
layer.

The equation showed two ways in which the PGE
could be reduced or eliminated. Error velocities were
reduced by calculating hydrostatic pressures as the sum
of incremental pressures over shallow layers. It would
seem that the only limitation on completely eliminating
PGE is the number of calculations required to obtain
the total column pressure. However, Mahrer (1984)
found errors in horizontal gradients of meteorological
fields when the distance between two vertical grid points
is smaller than the distance between two horizontally
adjacent terrain-following coordinate points. Although
the geometry of the development presented here differs
from the problem design of Mabhrer, it is recognized
that allowing coordinate surfaces to cross pressure sur-
faces between gnd points may increase the PGE.

The curves of w(a, o) in Fig. 7 all terminate at the
upper right of the grid column in Fig. 5. The positive

curvatures are an indication that much larger w(a, )
should be expected if the coordinate surface crossed

the pressure surface between grid points. In that event,
the coordinate surface intersects the grid column above
Zo as is shown by the dashed line in Fig. 5. The interval
AZ5 is directed upward (the convention of integration
is downward ) and AZ, is negative. Therefore, w( e, o)
= a(l — a) + o/(1 + o). For steeper coordinate sur-
faces slopes, the first term becomes negligible and w(a,
o) = w(a') = ()2 Thus, when coordinate surfaces
cross pressure surfaces between grid points, growth
of w(a') can offset small AZ, and cause growth in
the PGE.

Mabhrer suggested that the horizontal grid spacing
be reduced so that the sloping coordinate surfaces
would be contained within a single pressure interval.
The horizontal grid spacing of 20 m used throughout
this study was sufficient to satisfy Mahrer’s criteria.
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